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ARTICLE HIGHLIGHTS

� Why did we undertake this study?
Analysis of metabolite biomarkers of incident type 2 diabetes (T2D) and their relationship to specific etiologies across diverse populations is
lacking.

� What is the specific questions we wanted to answer?
Do metabolite biomarkers of T2D risk capture information about specific aspects of T2D etiology, and does this association vary with race?

� What did we find?
Diacylglycerols (DAGs) captured T2D risk information related to 2-h postchallenge glucose. Phosphatidylcholines (PCs) are incident T2D
biomarkers independent of glycemic markers and insulin. No significant interaction between race and DAG or PC biomarkers was found.

� What are the implications of our findings?
DAGs and PCs, respectively, capture T2D risk information related to and distinct from conventional glycemic markers. They have potential to be
used in ancestrally diverse populations.
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OBJECTIVE

Plasma metabolite profiling has uncovered several nonglycemic markers of inci-
dent type 2 diabetes (T2D). We investigated whether such biomarkers provide in-
formation about specific aspects of T2D etiology, such as impaired fasting glucose
and impaired glucose tolerance, and whether their association with T2D risk varies
by race.

RESEARCH DESIGN AND METHODS

Untargeted plasma metabolite profiling was performed of participants in the
FINRISK 2002 cohort (n = 7,564). Cox regression modeling was conducted to iden-
tify metabolites associated with incident T2D during 14 years of follow-up. Me-
tabolites were clustered into pathways using Gaussian graphical modeling.
Clusters enriched for T2D biomarkers were further examined for covariation with
fasting plasma glucose (FPG), 2-h postchallenge plasma glucose (2hPG), HbA1c, or
fasting insulin. Validation analyses and tests of interaction with race were per-
formed in the Atherosclerosis Risk in Communities (ARIC) study.

RESULTS

Two clusters of metabolites, representing diacylglycerols (DAGs) and phosphati-
dylcholines (PCs), contained the largest number of metabolite associations with
incident T2D. DAGs associated with increased T2D incidence (hazard ratio [HR]
1.22; 95% CI 1.14–1.30) independent of FPG, HbA1c, and fasting insulin, but not
2hPG. PCs were inversely associated with T2D risk (HR 0.78; 95% CI 0.71–0.85) in-
dependent of FPG, 2hPG, HbA1c, and fasting insulin. No significant interaction be-
tween DAGs or PCs and race was observed.

CONCLUSIONS

Fasting DAGs may capture information regarding T2D risk similar to that repre-
sented by 2hPG; PCs may capture aspects of T2D etiology that differ from those
represented by conventional biomarkers. The direction of effect and strength of
DAG and PC associations with incident T2D are similar across European and African
Americans.

Type 2 diabetes (T2D) currently affects 500 million adults worldwide and its preva-
lence is increasing globally (1). Prevention of T2D can be partially achieved by pre-
morbid medical and lifestyle interventions, although these require intensive patient
and provider effort (2,3). Furthermore, there is a growing appreciation of heteroge-
neity in disease manifestation and complications for T2D that are not captured by
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conventional glycemic risk factors alone
(4,5). Thus, targeting individuals for pre-
vention and individualizing treatment strat-
egies require biomarkers that capture
aspects of molecular etiology distinct from
commonly used biomarkers. To some ex-
tent, dynamic tests such as the oral glu-
cose tolerance tests (OGTTs) can start to
distinguish T2D pathophysiology (6). For
example, the fasting plasma glucose (FPG)
level largely represents the gluconeogenic
output of the liver (7), whereas the 2-h
postchallenge plasma glucose (2hPG) level
represents skeletal muscle insulin sensi-
tivity, because skeletal muscle is the ma-
jor glucose disposal organ (8). However,
OGTTs are not commonly used in the
clinic, because they require lengthy pa-
tient visits and multiple blood samples.

Additionally, a recently recognized but
clinically important source of heterogene-
ity is race/genetic ancestry. Glycated he-
moglobin A1c (HbA1c) has long been used
as a marker of glycemic control and as a
prognosticator of micro- and macrovascu-
lar complications (9). Clinical HbA1c cutoff
values for treatment intensification were
applied across all populations, extrapolat-
ing from landmark studies performed pri-
marily with White participants (9). With
the availability of frequently sampled glu-
cose by continuous glucose monitoring, it
was found that HbA1c values overesti-
mate glucose in African American individ-
uals, potentially leading to overdiagnosis
and unnecessary treatment (10). These
findings highlight the importance of eval-
uating race/ancestry in any biomarker dis-
covery effort.

Given that T2D is a disorder of metab-
olism, metabolites are an important class
of molecules from which novel etiologic
markers might be identified.With advan-
ces in high-throughput metabolomics, it
is now possible to measure thousands of
metabolites in blood, enabling the identifi-
cation of novel chemical classes of T2D risk
predictors beyond the standard metabolite
glucose and its derivatives (11). Identified
metabolite predictors of T2D include
branched-chain amino acids (12), short-
and long-chain acylcarnitines (13), acylgly-
cerols (including diacylglycerols [DAGs]),
and phospholipids (including phosphati-
dylcholines [PCs]) (14). Whether these
metabolite classes capture the same as-
pects of T2D etiology as conventional gly-
cemic markers remains largely unknown.

In this study, we evaluated to what ex-
tent metabolite biomarkers of different

chemical classes may provide information
on T2D risk related to known and poten-
tially novel aspects of T2D etiology. We
also determined whether any identified
T2D risk association varied between pop-
ulations of European and African ances-
try. Our findings highlight two classes:
circulating DAGs and PCs. We find that
DAGs capture T2D risk information that
is related to 2hPG level, and PCs capture
T2D risk information that is independent
of glycemic markers and insulin. Further-
more, we observe that both DAGs and
PCs have similar T2D risk association
in European American (EA) and African
American (AA) individuals.

RESEARCH DESIGN AND METHODS

Study Design and Participants
The FINRISK is a population-based pro-
spective study whose main objective is to
monitor noncommunicable disease risk
factors, health behavior, and their changes
in the Finnish population. The FINRISK
2002 cohort is composed of participants
aged 25–74 years from Finland. Partici-
pants completed questionnaires, under-
went physical examination with blood
sampling, and were followed up for
14 years through computerized record link-
age. In addition, an OGTT was carried out
by a subset of participants (aged 44 years
or older) after a 12-h fast, as described pre-
viously (15). Ascertainment of the T2D
cases at baseline and incident cases during
follow-up were made using the partici-
pants’ Finnish personal identification num-
ber and information stored in the National
Hospital Discharge Register (NHDR), Causes
of Death Register (CDR), and the Drug Re-
imbursement and Drug Purchase Registers
(DPR). The ICD codes E10-E14 (ICD-10) or
250*B (ICD-9) were used to extract dia-
betes diagnoses from the NHDR and
CDR. The Anatomical Therapeutic Chemi-
cal code A10 or a special reimbursement
code for diabetes medications was used
to extract diabetes status from the DPR.
If medicine purchase was the only available
evidence for diabetes diagnosis, three or
more purchases were required. Further-
more, to exclude type 1 diabetes cases,
participants younger than 30 years who
were treated with insulin, or insulin and
metformin, and those aged 30–40 years
when insulin only was first used, were not
categorized as having T2D. To identify indi-
viduals who were taking a lipid medication,
Anatomical Therapeutic Chemical code

C10was used. Details on the FINRISK study
have been described previously (16).

For validation and assessment of a po-
tential race interaction with selected bio-
markers, we repeated analyses in the
Atherosclerosis Risk in Communities (ARIC)
study wherein an overlapping set of me-
tabolites was profiled using a bioactive
lipids liquid chromatography-mass spec-
trometry (LC-MS) profiling method. ARIC
is a prospective cohort designed to inves-
tigate the causes of atherosclerosis and
related outcomes by race, sex, location,
and date. Participants aged 45–65 years
at baseline were recruited from four U.S.
communities (Forsyth County, NC; Jackson,
MS; suburbs of Minneapolis, MN; and
Washington County, MD) in 1987–1989
and followed up to date. Details on the
ARIC study have been previously described
(17,18). T2D was defined by the following
criteria: FPG $126 mg/dL, HbA1c >6.5%,
taking glucose-lowering medication, or
self-reported diagnosis of diabetes by a
doctor.

Plasma Metabolite Profiling
Metabolite signatures in the FINRISK co-
hort were measured using untargeted LC-
MS, as described in the Supplementary
Material. Chromatographic peaks were
extracted using an image-based deep neu-
ral network algorithm (19). Raw intensity
values were batch corrected and normal-
ized by multiplying by the cohort median
peak intensity and dividing by the plate
median peak intensity. Metabolite signa-
tures missing in>50% of FINRISK samples
(n = 246) were filtered out; for the remain-
ing metabolite signatures (n = 31,701),
missing values (i.e., metabolites whose lev-
els were below the detection limit in cer-
tain samples) were imputed by sampling
from the uniform distribution of the mini-
mum value of each metabolite and divid-
ing the minimum value by 6. Metabolite
signatures were systematically dedupli-
cated to distinguish unique metabolites
by leveraging expected charge to mass
ratio (m/z) differences for isotopes and
adducts, and requiring coelution (i.e.,
the same retention time), similar chro-
matographic peak shape, and strong cor-
relation in intensity (Pearson correlation
value$ 0.75) for a signature to be flagged
as a duplicate of another signature. Me-
tabolite signatures were annotated using
m/z matching to entries in the Human
Metabolome Database (version 5.0) (20).
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For at least one metabolite signature
within each network cluster, the annota-
tion was confirmed using a commercial
standard or diagnostic tandem mass
spectrometry fragmentation. Metabo-
lites of interest (i.e., DAG and PC lipid
species) were measured in the ARIC co-
hort using LC-MS of bioactive lipids, as
described in the Supplementary Material,
and manually mapped and extracted
from the LC-MS data using m/z, retention
time and chromatographic peak shape
characteristics.

Statistical Analysis

Cox Regression Analysis

Outlier metabolite intensity values were
capped using the 99th percentile of each
metabolite. The data were scaled by sub-
tracting the population mean and dividing
by the population SD for each metabolite
as follows:

z ¼ metabolite intensityð

�populationmeanÞ

=population standard deviation

where z is the z score and the value that
was used for all downstream analysis,
with the exception of the race interaction
analysis in ARIC for which metabolite in-
tensity values without scaling were used.
To identify metabolites that associate
with T2D incidence risk, we performed
Cox proportional hazard regressions ad-
justing for age, sex, and BMI (the basic
model), using the function coxph() from
the R package survival (21). This analysis
was carried out for each of the mea-
sured metabolite signatures in FINRISK
and prioritized lipid metabolites in ARIC
separately. Metabolite signatures from
the analysis in FINRISK with P value be-
low the metabolome-wide significance
level of 10�6 were considered statistically
significant and are referred to as bio-
markers. For subsequent analyses, Bon-
ferroni correction was used to set the
P value threshold.

In a secondary analysis for selected
biomarkers, we tested the metabolites
for association with T2D incidence when
adjusting for FPG, 2hPG, HbA1c, and fast-
ing serum insulin values. The proportional
hazards assumption for biomarkers of
interest was verified by plotting Schoen-
feld residuals. Survival curves were plotted
using the function ggsurvplot() from the R
package survminer (22).

Gaussian Graphical Modeling Network

Creation

Of 31,701 detected metabolite signatures,
we filtered out those that were not statis-
tically significant biomarkers of incident
T2D (P > 10�6) and either present at low
intensity in >50% of the samples or were
predicted to be isotopes or adducts of
other signatures. This resulted in 12,237
metabolite signatures. Unlike for the Cox
regression analysis, the levels of these
metabolite signatures were first log-
transformed before z transformation. To
cluster metabolites by chemical pathway,
we applied Gaussian graphical modeling
(GGM) and estimated partial correlations
between metabolite signature pairs (23).
The GGM network was created using the
R package GeneNet (24). In short, this
tool uses a shrinkage-based regularization
approach to create a stable estimate of
the partial correlation matrix and a mix-
ture model to generate P values for each
partial correlation value. We constructed
a network with metabolites as nodes,
and edges between them were selected
from the partial correlation matrix such
that any edge had a probability>0.9 (i.e.,
local false discovery rate < 0.1). Last, we
performed cluster detection on the net-
work using the Louvain algorithm imple-
mented in NetworkX (25), with the
absolute value of the partial correlations
as weights and resolution set to 11. Net-
works were visualized using Cytoscape
(26).

Ethics Approval
The FINRISK 2002 study was approved by
the Ethical Committee for Epidemiology
and Public Health of the Helsinki University
Hospital District on 19 December 2001
(Ref 558/E3/2001).The ARIC study was ap-
proved by the institutional review boards
of participating institutions and all partici-
pants provided written informed consent.

Data and Resource Availability
The data sets generated during and/or ana-
lyzed during this study are not publicly avail-
able, because they contain protected health
information on study participants. Data
Tables 1, 2, and 3 are available at https://
docs.google.com/spreadsheets/d/e/2PACX-
1vRqh2W9AJeVTDNF9wjjmUcnAX20NSodZ-
zLAiIN-CRhOYbNGQb52dAHxw8zlqbmGFQ/
pubhtml. Additional de-identified data are
available from the corresponding author
upon reasonable request and with per-
mission of the Finnish Institute for Health

and Welfare and the ARIC Coordinating
Center.

RESULTS

Cohort Characteristics
From 8,014 participants included in
FINRISK 2002, plasma was collected
and metabolites were profiled using
untargeted LC-MS (Fig. 1A). For this
study, we analyzed the plasma metab-
olome of 7,564 participants free of
known T2D at baseline. Of these, 47%
of the participants were men. The
mean age was 48 years and the mean
BMI was 27 kg/m2. Through a mean of
14 years of follow-up, 656 T2D incident
cases were recorded (Supplementary
Table 1, Supplementary Fig. 1).

Bioactive lipid data from fasting
plasma samples (i.e., $8 h self-reported
fasting time) from visit 2 of ARIC
(1990–1992) from 7,562 participants
with nonprevalent T2D were analyzed.
The mean age of these participants
was 57 years; 44% of the participants
were men; and their mean BMI was
27 kg/m2. Over a mean follow-up time of
12 years (up to visit 5 of the study), 1,211
individuals developed T2D. In the co-
hort, 6,145 individuals self-identified
as EA and 1,417 as AA (Supplementary
Table 2).

Identification of Metabolite
Biomarkers of Incident T2D
Of the 31,701 metabolite signatures mea-
sured in the FINRISK cohort, 171 signa-
tures were metabolome-wide, statistically
significant (P < 10�6) biomarkers for T2D
incidence in a Cox regression model ad-
justed for age, sex, and BMI (Fig. 1B, Data
Table 1). The biomarkers span a wide
range of chemical classes, including polar
small molecules, polar lipids, and nonpolar
lipids (Fig. 1C). We observed a number of
known and previously reported predictors
of increased T2D risk, including glucose
(hazard ratio [HR] 1.29; 95% CI 1.20–1.39),
lactate (HR 1.22; 95% CI 1.15–1.30) (27),
and several amino acids, including gluta-
mate (HR 1.42; 95% CI 1.34–1.51) (28),
threonine (HR 1.25; 95% CI 1.19–1.31),
proline (HR 1.26; 95% CI 1.17–1.35) (29),
and arginine (HR 1.19; 95% CI 1.11–1.27)
(30). We also detected the known inverse
risk marker linoleoylglycerophosphocholine
(HR 0.77; 95% CI 0.70–0.85) (31) (Data
Table 1).

diabetesjournals.org/care Begzati and Associates 475

D
ow

nloaded from
 http://diabetesjournals.org/care/article-pdf/48/3/473/793873/dc242266.pdf by U

N
IV O

F C
ALIF SAN

 D
IEG

O
 user on 10 M

arch 2025

https://doi.org/10.2337/figshare.28027814
https://docs.google.com/spreadsheets/d/e/2PACX-1vRqh2W9AJeVTDNF9wjjmUcnAX20NSodZzLAiIN-CRhOYbNGQb52dAHxw8zlqbmGFQ/pubhtml
https://docs.google.com/spreadsheets/d/e/2PACX-1vRqh2W9AJeVTDNF9wjjmUcnAX20NSodZzLAiIN-CRhOYbNGQb52dAHxw8zlqbmGFQ/pubhtml
https://docs.google.com/spreadsheets/d/e/2PACX-1vRqh2W9AJeVTDNF9wjjmUcnAX20NSodZzLAiIN-CRhOYbNGQb52dAHxw8zlqbmGFQ/pubhtml
https://docs.google.com/spreadsheets/d/e/2PACX-1vRqh2W9AJeVTDNF9wjjmUcnAX20NSodZzLAiIN-CRhOYbNGQb52dAHxw8zlqbmGFQ/pubhtml
https://docs.google.com/spreadsheets/d/e/2PACX-1vRqh2W9AJeVTDNF9wjjmUcnAX20NSodZzLAiIN-CRhOYbNGQb52dAHxw8zlqbmGFQ/pubhtml
https://doi.org/10.2337/figshare.28027814
https://doi.org/10.2337/figshare.28027814
https://doi.org/10.2337/figshare.28027814
https://doi.org/10.2337/figshare.28027814
https://doi.org/10.2337/figshare.28027814
https://diabetesjournals.org/care


Clustering of T2D Risk Biomarkers
To evaluate if these T2D risk biomarkers
clustered into metabolic pathways, we

clustered all measured metabolites using
GGM (23). Of the 171 identified T2D bio-
markers metabolites, 119 were connected

to other metabolites in the GGM net-
work. We applied cluster detection to dis-
ambiguate the entire GGM network into
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657 clusters of chemically related metabo-
lites. The 119 T2D risk biomarkers were dis-
tributed among 44 clusters (Supplementary
Fig. 2, Data Table 2). We focused attention
on the DAG and PC clusters, which com-
posed the top two clusters that contained
the most unique T2D biomarkers (n =
4 DAGs and n = 4 PCs; Fig. 2A and B).
Four unique metabolites in the DAG

cluster—DAG(32:0), DAG(32:1), DAG(34:2),
and DAG(36:4)—were associated with
increased T2D risk, with HRs ranging be-
tween 1.20 and 1.22 (Fig. 2C, Table 1,

Supplementary Fig. 3). The cluster com-
posed of PCs associated with decreased
T2D incidence with HRs ranging between
0.78 and 0.79 (Fig. 2D). The specific PC
species we found include LPC(O–24:1),
PC(38:2-2OH), PC acyl-alkyl (40:5), and
PC(42:4). To our knowledge, LPC(O–24:1)
and PC(38:2-2OH) have not been linked
to T2D incidence previously. These lipid
biomarkers replicated in the independent
ARIC cohort at a multiple hypothesis
corrected significance threshold (P < 6 �
10�3 [0.05/8]) (Table 1).

Relationship of DAGs and PCs With
Conventional T2D Biomarkers
To assess whether these DAG and PC bio-
markers provide information about spe-
cific aspects of T2D etiology, we evaluated
the association of DAGs and PCs with inci-
dent T2D in models corrected for conven-
tional T2D risk markers. We recomputed
HR estimates for the DAGs and PCs in Cox
regression models adjusted for age, sex,
BMI, and FPG, 2hPG, HbA1c, or fasting se-
rum insulin levels. The association of DAGs
with T2D incidence remained significant in
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Figure 2—Clusters enriched for T2D biomarkers from the GMM network of measured metabolite signatures. A: Cluster of DAGs associated with in-
creased risk for incident T2D. B: Cluster of PCs associated with decreased risk for incident T2D. Edges represent statistically significant partial corre-
lations between metabolite signatures. Kaplan-Meier curves for samples with DAG(36:4) (C) and PC(42:4) (D) levels in the upper vs. lower quartile.
P values for the Kaplan-Meier curves were determined using the log-rank test.
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models adjusted for FPG, HbA1c, or fast-
ing insulin levels but was attenuated
when adjusted for 2hPG value (Fig. 3A,
Data Table 3). The species from the PC clus-
ter remained significantmarkers of T2D inci-
dence when adjusted for FPG, 2hPG, HbA1c,
or fasting insulin concentration. Notably,
their association was partially attenuated by
the adjustment for 2hPG concentration, es-
pecially for PC(38:2-2OH) (Fig. 3B).

We further examined if the DAG and PC
associations with T2D incidence were
related to serum lipid measurements, be-
cause DAGs especially are in the biosynthetic
pathway for triacylglycerols (TAGs; com-
monly measured in serum triglycerides).
Again, we computed HR estimates for
DAGs and PCs with incident T2D in Cox re-
gression models, this time including serum
TAGs, HDL cholesterol, or total cholesterol

as covariates (Supplementary Table 3).We
found that adjustment for HDL or total
cholesterol had minimal effect on the haz-
ard estimates for DAGs and PCs. Correc-
tion for TAGs attenuated the strength of
association of DAGs with incident T2D, but
three of four DAG species remained signifi-
cant. Finally, we found that use of lipi-
d-lowering medication was associated
with increases in plasma levels of two of

Table 1—Cox regression statistics for DAG and PC biomarkers with incident T2D

Biomarker FINRISK HR FINRISK P value ARIC HR ARIC P value Biomarker-race interaction P value

DAG(32:0) 1.20 2.00 � 10�8 1.12 2.66 � 10�5 0.5

DAG(32:1) 1.21 7.62 � 10�9 1.18 1.67 � 10�12 0.8

DAG(34:2) 1.21 1.03 � 10�8 1.20 8.95 � 10�15 0.6

DAG(36:4) 1.22 7.65 � 10�10 1.16 8.23 � 10�11 0.8

LPC(O–24:1) 0.79 1.17 � 10�7 0.78 2.44 � 10�13 0.7

PC(38:2-2OH) 0.78 7.06 � 10�9 0.81 6.69 � 10�11 0.3

PC(40:5) 0.79 1.52 � 10�9 0.78 2.00 � 10�15 0.4

PC(42:4) 0.79 5.22 � 10�8 0.78 1.05 � 10�12 0.8

A B

 Cox Regression Model

Basic Model (n = 7,564; 656 events)

Basic Model + Fasting Glucose (n = 3,236; 392 events)

Basic Model + 2-hour Glucose (n = 3,215; 387 events)

Basic Model + HbA1c (n = 4,267; 387 events)

Basic Model + Fasting Insulin (n = 3,235; 393 events)

Hazard RatioHazard Ratio

1.17  1 × 10–4

1.13  0.003

1.20   2 × 10–8 

1.19  3 × 10–5

1.07  0.1

1.19  3 × 10–5 

1.21  8 × 10–9

1.22  2 × 10–6

1.20  2 × 10–5

1.10  0.03

1.19  6 × 10–5

1.19  1 × 10–4

1.20  6 × 10–5

1.21  1 × 10–8 

1.11  0.02

1.16  4 × 10–4
1.22  8 × 10–10

1.19  1 × 10–5
1.09  0.04

1.20  1 × 10–5

DAG(32:0)

DAG(32:1)

DAG(34:2)

DAG(36:4)

0.6 0.8 1 1.2 1.4

 HR   P value

0.77  1 × 10–5

0.79  4 × 10–5

0.79  1 × 10–7

0.76  3 × 10–6

0.79  6 × 10–5

0.80  4 × 10–5

0.80  7 × 10–5

0.86  0.007
0.81  1 × 10–4
0.78  7 × 10–9

0.79  2 × 10–9

0.81  2 × 10–5

0.83  2 × 10–4

0.84  0.002
0.81  4 × 10–5

0.84  0.003
0.78  1 × 10–5

0.79  5 × 10–8

0.82  3 × 10–4

0.81  2 × 10–4

LPC(O−24:1)

PC(38:2−2OH)

PC(40:5)

PC(42:4)

0.6 0.8 1 1.2 1.4

 HR   P value

Figure 3—Cox regression statistics with covariate analysis. Associations between each biomarker of the DAG cluster (A) and PC cluster (B) and incident
T2D in a Cox regression model adjusted for age, sex, and BMI only (basic model), or including correction for fasting plasma glucose, 2-h postchallenge
plasma glucose, HbA1c, and fasting insulin values, respectively. HRs are per 1 SD increase in metabolite level and plotted on a logarithmic scale.
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four DAG species [but had no impact on
association with incident T2D (Supple-
mentary Table 4)].

Associations of DAGs and PCs With
Incident T2D in EA and AA
Participants
To investigate whether the identified as-
sociations of DAGs and PCs with incident
T2D differed by race, we performed sub-
group analysis in the ARIC cohort strati-
fied by race. We identified race-specific
differences in metabolite distributions:
median levels of both DAGs and PCs were
higher in EA compared with AA individu-
als [with the exception of PC(38:2-2OH);
Supplementary Fig. 4]. To assess if these
distributional differences influenced the
strength and directionality of the associa-
tion with incident T2D, we performed
race-stratified Cox regression analysis ex-
amining the interaction between race
and metabolite for each DAG and PC. No
significant interactions were identified
(Table 1), suggesting that the associa-
tions of these metabolites with incident
T2D are relevant to both EA and AA
individuals.

CONCLUSIONS

In this study, we applied high-throughput,
untargeted metabolomics to two large
prospective cohorts (FINRISK 2002 and
ARIC) to identify and replicate metabolites
associated with incident T2D. We identi-
fied 171 metabolite biomarkers, which
clustered into several chemical classes
ranging from polar small molecules to lip-
ids, including two classes of lipids, DAGs
and PCs, which were respectively associ-
ated with an increased and decreased
T2D incidence (32,33). Through covariate
analysis, we showed that several species
of DAGs captured similar information as
2hPG values, whereas several PCs were
associated with T2D incidence indepen-
dently from conventional glycemic markers,
indicating that they marked a distinct as-
pect of T2D etiology. Finally, we found
that the hazard conferred by these DAG
and PC lipids for T2D was similar for EA
and AA individuals.
The molecular physiology of DAGs has

been studied with respect to the develop-
ment of insulin resistance as activating
ligands of protein kinase C (PKC) (34).
DAG-mediated activation of PKC-e and
PKC-u (in the liver and skeletal muscle, re-
spectively) inhibits insulin receptor activity

in the liver (35) and decreases insulin-
stimulated glucose transport activity in
muscle (36). In muscle, this molecular
pathophysiology aligns with our finding
that circulating DAGs capture similar infor-
mation as 2hPG concentration, which is
largely determined by muscle glucose dis-
posal (8). Thus, we would propose that, in
humans, DAGs cause muscle-specific insu-
lin resistance via the activation of PKC-u,
leading to impaired muscle glucose dis-
posal as a potential mechanism for T2D
risk. Interestingly, although our hazard
models showed that DAGs remained sig-
nificantly associated with T2D when cor-
rected for FPG and, thus, are independent,
the signal was attenuated, which is consis-
tent with a partial relationship with he-
patic glucose production (Fig. 3A). Our
data suggest that, in humans, circulating
DAGs reflect skeletal muscle insulin resis-
tance to a greater extent than hepatic in-
sulin resistance.

By contrast, the molecular mechanism
underlying the protective effects of PCs
on T2D is less clear. One possible mecha-
nism is through a reduction of inflamma-
tion in metabolic tissues such as adipose
tissue (37) or pancreatic islets (38), which
have been shown to be associated with
insulin resistance and T2D in model sys-
tems. PCs have anti-inflammatory proper-
ties (39), but further work is needed to
substantiate if amelioration of adipose
tissue and pancreatic islet inflammation
could contribute to the protection against
T2D. Interestingly, insulin secretion in peo-
ple with T2D increased in a small study of
recombinant HDL cholesterol infusion (40).
HDL particles have a high component of
PCs in their lipid membrane, but our asso-
ciation of PCs and incident T2D was inde-
pendent of serum HDL (Supplementary
Table 3).

Our study has several strengths, in-
cluding a robust follow-up, diverse co-
horts, depth of clinical characterization,
and unbiased metabolomic profiling. The
population-based FINRISK 2002 discov-
ery cohort includes a long follow-up pe-
riod (average follow-up of 14 years) with
few censored individuals over time. The
cohort also has a rich set of conventional
glycemic markers ascertained, including
FPG, 2hPG, serum insulin from an OGTT,
and HbA1c measurements. The ARIC rep-
lication and follow-up cohort contained
individuals who were different demo-
graphically, environmentally, and ances-
trally, being drawn from U.S. communities.

Finally, in contrast to previous studies of
metabolites associated with T2D (12–14),
we profiled a breadth of metabolites with
diverse chemistries in the FINRISK cohort
(n = 31,701 metabolite signatures).

Limitations of our study include hetero-
geneity between discovery and replica-
tion cohorts, and the semiquantitative
nature of the LC-MS metabolomics plat-
form. One important difference between
the discovery (FINRISK) and replication
(ARIC) is the duration of fasting. Whereas
all ARIC samples selected for this study
were taken after a minimum 8 h of fast-
ing, only 12% of FINRISK samples met this
criterion (however, 71% of participants
had fasted for at least 5 h; Supplementary
Fig. 5). Nevertheless, the replication of
the biomarkers of interest indicates that
fasting did not severely compromise our
findings. Furthermore, although we tried
to distinguish incident T2D from type 1 di-
abetes in the FINRISK cohort, it was not
possible to ensure that this distinction
was made without some overlap in both
of our study cohorts. It is also important
to note that metabolite levels measured
using untargeted metabolomics are semi-
quantitative, meaning that only relative
levels are determined. Thus, although they
can provide information on aspects of T2D
etiology, as we have presented, they can-
not be immediately translated to clinical
use, for which absolute quantification and
diagnostic test evaluation would be re-
quired. This would be the subject of future
work to develop these DAG and PCmetab-
olites into clinically suitable biomarkers.
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