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Clinical exome sequencing routinely identifies missense 
variants in disease-related genes, but functional 
characterization is rarely undertaken, leading to diagnostic 
uncertainty1,2. For example, mutations in PPARG cause 
Mendelian lipodystrophy3,4 and increase risk of type 2 
diabetes (T2D)5. Although approximately 1 in 500 people 
harbor missense variants in PPARG, most are of unknown 
consequence. To prospectively characterize PPARγ variants, 
we used highly parallel oligonucleotide synthesis to construct 
a library encoding all 9,595 possible single–amino acid 
substitutions. We developed a pooled functional assay in 
human macrophages, experimentally evaluated all protein 
variants, and used the experimental data to train a variant 
classifier by supervised machine learning. When applied 
to 55 new missense variants identified in population-based 
and clinical sequencing, the classifier annotated 6 variants 
as pathogenic; these were subsequently validated by single-
variant assays. Saturation mutagenesis and prospective 
experimental characterization can support immediate 
diagnostic interpretation of newly discovered missense 	
variants in disease-related genes.

A major challenge in clinical exome sequencing is determining the 
pathogenicity of missense variants incidentally found in genes previ-
ously implicated in a severe genetic disease1,2,6. Every exome contains 
~200 missense variants that have never before been seen7. Few of these 
are in fact pathogenic, but functional testing is too slow and resource 

intensive to be deployed at scale, leading to many variants of uncertain  
significance (VUS)8. The lack of functional data and failure to  
explicitly incorporate information about ascertainment and  
prevalence can lead both to misdiagnosis6,9 (if a benign vari-
ant is presumed pathogenic) and overestimation of penetrance  
(if modestly functional variants are systematically excluded from 
disease databases).

Peroxisome proliferator–activated receptor γ (PPARγ) exemplifies 
the challenge of classifying newly identified variants even in a well-
studied disease-implicated gene. Rare mutations in PPARG cause 
familial partial lipodystrophy 3 (FPLD3)3,4, and a common missense 
variant, p.Pro12Ala, along with linked noncoding variants, associ-
ates with risk of T2D10,11. The molecular functions of PPARγ are 
well characterized12,13, including its role as the target of antidiabetic 
thiazolidinedione medications. Approximately 0.2% of the general 
population carries a rare missense variant in PPARG, but only 20% 
of these variants are functionally relevant and associated with meta-
bolic disease5.

To enable functional interpretation of PPARγ variants identi-
fied in exome sequencing, we constructed a cDNA library consist-
ing of all possible amino acid substitutions in the protein (Fig. 1a 
and Supplementary Fig. 1). Based on the observation that primary 
monocytes isolated from the blood of patients with FPLD3 exhibit 
a blunted PPARγ response when stimulated with agonists ex vivo13, 
the construct library was introduced into human macrophages edited 
to lack the endogenous PPARG gene (Supplementary Fig. 2). After 
stimulation with PPARγ agonists, cells were sorted by FACS according  
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to the level of expression of CD36, a canonical target of PPARγ in 
multiple tissues14,15 (Fig. 1a). The sorted CD36+ and CD36− cell 
populations were sequenced to determine the distribution of each 
PPARγ variant in relation to CD36 activity.

‘Function scores’ were generated for each amino acid substitution 
at each site in PPARγ (Figs. 1b and 2a, and Online Methods) by par-
titioning variants into those present in the CD36+ and CD36− FACS 
populations. Over 99% of all possible amino acid substitutions in 
the protein were covered. Of the 20 possible amino acids at each site,  
a change to proline was most likely to reduce function and a change 
to cysteine was best tolerated, consistent with the known conforma-
tional effects of amino acid side chains on protein structure16. Each 
of the 505 amino acid positions in PPARγ was assigned a ‘tolerance 
score’ by combining the function scores for the 19 alternative amino 
acids at that position (Fig. 1b). Tolerance scores were overlaid on 
the known crystal structure of PPARγ (Fig. 2b)17, demonstrating 
that amino acid positions that are intolerant of substitution cluster  
at residues that contact DNA, co-activating proteins, and ligands  
(rosiglitazone) (Figs. 1b and 2b).

We next examined function scores derived from the CD36 macro-
phage assay for mutations previously reported in patients with lipo-
dystrophy and/or insulin resistance and known to diminish PPARγ 
activity (Fig. 2a). These pathogenic variants (Fig. 2a,c) clustered in 
the PPARγ ligand-binding and DNA-binding domains4,18 and had 
function scores demonstrating enrichment in the bin corresponding 
to ‘low’ CD36 activity. In contrast, higher-frequency variants, includ-
ing the common p.Pro12Ala variant, had function scores demon-
strating enrichment in the bin corresponding to ‘high’ CD36 activity  
(Fig. 2c and Supplementary Table 1). The distributions of function 
scores for the pathogenic and common variants were significantly 
different (P < 6 × 10−7, Kolmogorov–Smirnov test).

We used linear discriminant analysis (LDA) to combine the func-
tion scores for each of the 9,595 variants across multiple agonist 
conditions (Fig. 2c) into a classifier that maximized discrimination 
between the set of lipodystrophy-associated variants and the set of 
high-frequency variants. The classifier emits the likelihood of each 
variant being drawn from either of these two classes (pathogenic or 
benign) and can be expressed as a continuous integrated function 
score (IFS) (Fig. 2c).

As stated above and described in the Online Methods, the classi-
fier was trained on pathogenic variants obtained from the published 
literature and benign variants from population-based sequencing19. 
To evaluate the performance of the model on independent data, we 
turned to new variants obtained in population-based exome sequenc-
ing and sequencing of PPARG in patients referred to specialty clinics 
for possible lipodystrophy and early-onset diabetes. Specifically, we 
tested the predictions of functionality emitted by the classifier using 
standard assays and correlation with clinical phenotypes.

The classifier was applied to data from exome sequencing of 
22,106 cases and controls selected for study of early-onset myocar-
dial infarction (MIGEN)20. In total, 57 missense variants in PPARG 
were observed with minor allele frequency (MAF) less than 0.1%.  
Of these, 74% (n = 42/57) were new and thus had not previously been 
functionally characterized (Supplementary Table 1). To calculate a 
posterior probability of pathogenicity relevant to the clinical context 
in which the carriers were identified, we combined the IFS values for 
these variants with the estimated prevalence of FPLD3 in the general 
population (1:100,000 to 1:1,000,000)18. One variant, p.Arg194Gln, 
was estimated to be pathogenic with high posterior odds (benign:
pathogenic) of 1:10,000. The individual who was heterozygous for 
p.Arg194Gln carried a diagnosis of T2D and had fasting triglyceride 

levels in the 99th percentile (Supplementary Table 2). As described 
below, p.Arg194Gln was independently identified in a separate 
individual referred for clinical features of lipodystrophy (Fig. 3 and 
Supplementary Table 3) who similarly manifested T2D and severe 
hypertriglyceridemia. Moreover, the p.Arg194Gln variant abolished 
PPARγ transactivation activity in standard assays (Fig. 3c). The com-
bination of clinical and functional data indicates that p.Arg194Gln 
is likely pathogenic and that the individual from MIGEN may have 
undiagnosed FPLD3.

We next applied the classifier to variants ascertained from  
335 patients referred to UK centers specializing in monogenic forms 
of diabetes and/or insulin resistance. We identified 13 individuals as 
carrying new missense variants in PPARG (Supplementary Tables 2  
and 3), of whom 77% (10/13) had clinical features suggestive of  
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Figure 1  Comprehensive functional testing of 9,595 PPARγ amino acid 
variants. (a) A library of 9,595 PPARG constructs was synthesized, with 
each construct encoding one amino acid substitution. The construct 
library was introduced into THP-1 monocytes (edited to lack the 
endogenous PPARG gene) such that each cell received a single construct. 
The polyclonal population of THP-1 monocytes was differentiated into 
macrophages and stimulated with PPARγ agonists (rosiglitazone and 
prostaglandin J2), and the stimulated macrophages were separated via 
FACS according to expression of the PPARγ response gene CD36 into bins 
with low (−) and high (+) PPARγ activity. Each bin of cells was subjected 
to next-generation sequencing at the transgenic PPARG locus to identify 
and tabulate the introduced variants. PPARγ variant counts in the bins 
with low and high CD36 expression were used to calculate a functional 
score for all 9,595 variants. (b) Raw PPARγ function scores for each of 
the 9,595 variants plotted according to amino acid position along the 
PPARγ sequence. Blue indicates that an amino acid change away from the 
reference results in a low CD36 function score, whereas white indicates 
that a change to the amino acid does not alter function; gray corresponds 
to the reference amino acid. Function scores summed by amino acid 
position are plotted to the right, showing the level of tolerance for any 
amino acid substitution away from the reference.

l e t t e r s



1572	 VOLUME 48 | NUMBER 12 | DECEMBER 2016  Nature Genetics

l e t t e r s

lipodystrophy and associated metabolic derangement, including severe 
insulin resistance, non-alcoholic fatty liver, dyslipidemia, and low 
serum adiponectin levels (Supplementary Table 3). The IFS values 
for these 13 variants were lower than those found in the population- 
based cohort (P < 0.005, Student’s t test) (Fig. 3a). For each variant,  
the posterior probability of pathogenicity was calculated by combining 
the IFS for that variant and the prevalence of FPLD3 in patients ascer-
tained in these specialty clinics (~1:7, as estimated from Cambridge 
national lipodystrophy clinic records).

We found three variants (p.Glu54Gln, p.Asp92Asn, and 
p.Asp230Asn) in patients without clinical features of lipodystrophy 
who had been referred for sequencing on the basis of suspected mono-
genic diabetes. Despite having a higher prior probability because  
of their ascertainment in specialty clinics, these three variants were 

classified as benign with high confidence (posterior odds (benign:
pathogenic) = 200:1) (Supplementary Table 2). Moreover, when 
tested individually in standard PPARγ reporter assays, the corre-
sponding mutants showed function indistinguishable from that of 
wild-type PPARγ (Fig. 3c). Thus, the rate of benign variant identifica-
tion in individuals ascertained in specialty clinics (~1:110, n = 335) 
was similar to the rate of benign variants identified in the MIGEN 
cohort (~1:200, n = 22,106).

Three variants (p.Met31Leu, p.Arg308Pro, and p.Arg385Gln)  
classified as benign with high confidence were found in individu-
als with clinical features of partial lipodystrophy. The p.Met31Leu 
variant was found in a female proband with features of lipodystrophy 
and metabolic derangement (Supplementary Table 3); critically, her 
daughter had a very similar fat distribution and metabolic phenotype 
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but did not carry the p.Met31Leu variant. Thus, in this case, the phe-
notype did not segregate with genotype at PPARG. An individual with 
partial lipodystrophy carried a p.Arg385Gln variant, which was inde-
pendently identified in a woman from the population-based cohort 
who had not developed T2D by age 61 years (Supplementary Table 2).  
When tested in PPARγ reporter assays, corresponding mutants 
retained reporter activity, albeit their activity was subtly diminished 
under some conditions (Fig. 3). The combination of functional test-
ing, clinical data, segregation, and epidemiological analysis suggests 
that p.Met31Leu, p.Arg308Pro, and p.Arg385Gln are likely incidental 
findings, although it is not possible to rule out the possibility that they 
act as partial risk factors for metabolic phenotypes.

Six variants (p.Arg194Gln, p.Ala417Val, p.Arg212Trp, p.Pro387Ser, 
p.Met203Ile, and p.Thr356Arg) were found in patients with lipodys-
trophy and classified as pathogenic with high probability (posterior 
odds (benign:pathogenic) = 1:>25,000). Five of the six were confirmed 
to result in defective protein in classical transactivation assays. The 
exception was p.Arg212Trp, for which the corresponding mutant pro-
tein had normal transactivation function when tested using a syn-
thetic PPARγ response element (PPRE). However, Arg212Trp showed 
less activity than wild-type PPARγ in a reporter assay with an endog-
enous promoter (Fig. 4a) and reduced in vitro binding to three PPREs  
(Fig. 4b). The Arg212 side chain forms multiple hydrogen-bond 
contacts in the minor groove of DNA (Fig. 4c), outside the main 
PPRE binding motif. These data indicate that p.Arg212Trp is likely a 
pathogenic variant despite it not resulting in decreased activity in the 
traditional functional assay using a synthetic promoter.

Finally, p.Thr468Lys, found in a single patient with partial lipodys-
trophy, was classified by IFS as pathogenic with low confidence (pos-
terior odds (benign:pathogenic) = 2:3); its score fell in the overlapping 
tails of the distributions for benign and lipodystrophy-associated 
variants. In PPARγ reporter assays, this variant resulted in severely 
decreased function (Fig. 3), supporting the view that p.Thr468Lys is 
likely a pathogenic variant.

We previously reported that rare missense variants in PPARG that 
impair function in a single-variant adipocyte differentiation assay 
confer increased risk of T2D in the general population5. We reex-
amined this relationship using functional annotation emitted by the 
classifier (that is, IFS values) for the original sample of 118 PPARG 
variant carriers ascertained from 19,752 T2D cases and controls  
(Fig. 5a). We observed a long tail of variants with low IFS in T2D cases 
but not controls (P = 0.024, two-sample Kolmogorov–Smirnov test). 
We quantified this inverse relationship between IFS and T2D case sta-
tus (logistic regression β = −0.49 ± 0.15 (standard error), P = 0.002).  
The odds ratio for T2D in carriers of variants with the lowest tertile of 
IFS values (as compared to carriers of variants with IFS values in the 
highest tertile) was 6.5 (95% confidence interval (CI) = 1.9–41), con-
sistent with our previously published estimate5. The odds ratio for the 
middle versus highest tertile of IFS values was 2.0 (95% CI = 1.3–3.1), 
suggesting that PPARγ variants with even moderately reduced IFS 
confer a modest increase in T2D risk. By contrast, a conventional 
predictor of mutation deleteriousness (CONDEL score21) failed to 
distinguish between likely pathogenic and benign variants (P > 0.1, 
two-sample Kolmogorov–Smirnov test; Fig. 5b), misclassifying many 
likely benign variants as pathogenic (Fig. 5c).

These data show that it is possible to experimentally character-
ize all possible missense variants in a mammalian gene and use the 
information to guide interpretation of variants of uncertain signifi-
cance, a concept that has previously been applied to single protein 
domains22,23. Testing variants prospectively (that is, before their  
discovery in patients) overcomes barriers of time and scalability  

that have thus far made it impractical to incorporate experimental 
data into routine clinical variant interpretation. Furthermore, by 
simultaneously and consistently evaluating all variants in a single 
experiment, more valid comparisons can be made across variants  
as compared to data on different variants generated in different  
laboratories at different times.

The PPARG classifier annotated as benign nearly all variants 
(56/57) incidentally identified in a study of myocardial infarction. 
The one variant classified as pathogenic with high confidence (and 
confirmed by single-variant laboratory experiments) was observed 
in an individual with hypertriglyceridemia and T2D and was inde-
pendently observed in a patient with lipodystrophy, likely indicating 
FPLD3 (ref. 24). In 12 of 13 cases referred for suspected lipodystrophy 
or monogenic diabetes and carrying a PPARG variant, the classifier 
provided immediate, high-confidence information regarding the like-
lihood of a functional defect and a molecular diagnosis of FPLD3. 
In only a single case (p.Thr468Lys) did the classifier not provide a 
high-confidence estimate and low-throughput laboratory assays fail 
to corroborate the pooled assay data13.

Systematic variant construction, pooled experimental characteriza-
tion in relevant assays, and statistical integration with epidemiological 
data offers a generalizable approach to enable genome interpretation 
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at clinically important genes, reducing overdiagnosis6,9 and diagnos-
tic uncertainty8. Fully realizing such comprehensive approaches will 
require a complementary array of methods25. The PPARG construct 
library is easily shared so that others can generate and contribute 
function scores in other assays26, but as a transgene library it is not 
ideally suited for detecting the functional effects of coding variation 
on splicing efficiency. Given the limitations on the library and because 
CD36 expression is unlikely to report on all the functions of PPARγ, 
we have made the PPARG classifier available as a web application 
(MITER; see URLs) that can be updated as new genetic and functional 
data become available. Broadening this approach to other genes and 
diseases will require cellular assays that are disease relevant, robust, 
and scalable, and will also depend on the availability of training sets 
of pathogenic and benign variants. Such assays and variants exist for a 
number of genes implicated in Mendelian disease, making it possible 
to apply a similar approach to help interpret variants of uncertain 
significance for many other clinical situations.

URLs. MITER, http://miter.broadinstitute.org/; National Severe 
Insulin Resistance Service, http://www.cuh.org.uk/national-severe-
insulin-resistance-service; Diabetes Genes, http://www.diabetesgenes.
org/; lentivirus protocols, http://portals.broadinstitute.org/gpp/public/ 
resources/protocols; cell lines, http://www.broadinstitute.org/achilles.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Synthesis and assembly of 9,595 PPARG variant constructs. A library of all 
9,595 possible single–amino acid variants in PPARγ was synthesized using a 
site-directed, multiplexed method (Mutagenesis by Integrated TilEs (MITE); 
ref. 27) adapted to render it suitable for saturation mutagenesis in mammalian 
cells. Detail is provided below where methodological advancements were made 
to permit saturation mutagenesis of PPARG. First, the PPARG cDNA sequence 
(CCDS2609.1) was recoded (Supplementary Table 4) to eliminate susceptibility 
to restriction enzymes and CRISPR/Cas9 targeting sgRNAs to enable a ‘delete-
and-replace’ strategy. As described previously, DNA oligonucleotides were 
synthesized on a programmable microarray, with each oligonucleotide encod-
ing a desired amino acid change but otherwise homologous to the template,  
unmutated PPARG sequence in all other respects. Oligonucleotides were  
organized into ‘tiles’, with those within each tile differing in a central variable  
region but having identical 5′ and 3′ ends (Supplementary Table 4). Tiles 
were staggered such that their variable regions collectively spanned the entire 
template. To ensure uniform amplification and reduce chimera formation 
for the longer PPARG template, the protocol was modified to amplify each 
tile by emulsion PCR (MICELLULA DNA Emulsion and Purification Kit, 
EURx). The resulting products were inserted into linearized plasmids (Phusion 
High-Fidelity DNA Polymerase; NEB, M0530) that carried the remaining tem-
plate sequence using multiplexed Gibson assembly (NEBuilder HiFi DNA 
Assembly Master Mix; NEB, E2621L) according to the manufacturer’s pro-
tocol. A ‘frameshift-cleaning’ procedure was introduced given that the most 
common error mode during library construction (25–30% of constructs; data 
not shown) resulted from oligonucleotide synthesis errors causing 1- to 2-bp  
indels. The PPARG template vector was designed such that all PPARG con-
structs terminated with amber stop codons (TAG) and bore an in-frame zeocin 
resistance cassette (pUC57-PPARG-zeo; GenScript). Constructs bearing 
frame-shifting indels were depleted by transformation into an amber sup-
pressor cloning host (TG1, Lucigen) and dual selection of the construct library 
with zeocin and kanamycin. Library plasmids were purified from >106 colo-
nies to preserve complexity, and the frameshift-depleted PPARG transgenes 
were excised from the zeocin resistance cassette. To enable mammalian cell 
transduction, the transgene library was transferred into a lentiviral expression 
vector by simple restriction cloning and transfected into a packaging cell line 
to produce pooled lentivirus according to standard protocols (pLXI_TRC401; 
see URLs)5.

Deletion of endogenous PPARG in THP-1 monocytes using CRISPR/Cas9. 
The endonuclease Cas9 and sgRNAs targeting exon 6 of PPARG and exon 
8 of a control gene, PHACTR1, were introduced into THP-1 cells by lenti-
viral transduction (Supplementary Table 4). To quantify modification of 
the endogenous gene, genomic DNA was extracted at multiple time points, 
amplified by PCR around the PPARG sgRNA target site and Sanger sequenced 
(Supplementary Table 4). Cutting efficiency was determined using the TIDE 
web tool for decomposition analysis of the sequencing traces28. Twenty-one 
days after transduction of CRISPR/Cas9 with PPARG or control sgRNAs, cells 
were tested for PPARγ response by gene (FABP4) and protein (CD36) expres-
sion to validate lack of functional endogenous PPARγ. THP-1 cells treated 
with PPARG-targeting sgRNA and control sgRNA were stimulated with 1 µM 
rosiglitazone in THP-1 growth medium (RPMI-1640 supplemented with 10% 
FBS and 1% penicillin-streptomycin) for 72 h. mRNA was then extracted and 
quantified for FABP4 gene expression (nanoString Technologies). For CD36 
protein expression, THP-1 cells were stimulated with 50 ng/ml phorbol ester 
(PMA) and 1 µM rosiglitazone in growth medium for 72 h. Cells were then 
detached from the plate, washed and stained with a monoclonal antibody to 
CD36 according to the manufacturer’s protocol (Miltenyi, 130-100-149) and 
subjected to flow cytometry.

Simultaneous testing of 9,595 PPARG variants in experimental assays. 
The PPARG construct library was introduced into a human monocytic 
cell line (THP-1; obtained from the Broad Institute and tested negative for 
mycoplasma; see URLs) engineered through CRISPR/Cas9 to lack endog-
enous PPARG (Supplementary Fig. 2) by pooled infection. While isoform 
1 of PPARG is dominantly expressed in monocytes and macrophages, we 
expressed isoform 2, which is identical in sequence but encodes a protein 

with an additional 28 N-terminal amino acids. Both isoforms demonstrated 
identical ligand-dependent activity. Pooled virus was diluted such that the 
multiplicity of infection (number of viral particles per cell) was 0.3 so that each 
monocyte would receive zero or a single PPARG variant. Uninfected cells were 
eliminated by selection with 2 µg/ml puromycin. Expression of the PPARG 
transgene was controlled by a doxycycline-inducible promoter5. At least  
1 × 107 cells were infected to ensure that each PPARG variant was independ-
ently represented in 1,000 monocytes. The resulting polyclonal population 
of THP-1 monocytes containing the PPARG variant library was stimulated  
for 72 h with (i) 50 µM PMA to induce differentiation into macrophages;  
(ii) 1 µg/ml doxycycline to induce expression of PPARG constructs; and  
(iii) a low or high dose (based on ranges used in previous studies13) of thiazoli-
dinedione (rosiglitazone; 0.1–1 µM) or proposed natural ligand29 (prostaglan-
din J2; 0.1–10 µM) to stimulate PPARγ activity. The population of stimulated 
THP-1 macrophages was immunostained for CD36 (Miltenyi, 130-095-472), 
a cell surface protein that is a direct transcriptional target of PPARγ15. Using 
FACS, stained cells were grouped into two activity bins separated by at least 
five- to tenfold difference in expression of CD36 and selected to encompass 
equal numbers of cells (Supplementary Fig. 3). For each stimulation condi-
tion, at least three replicates were generated, each with at least 5 × 106 cells 
sorted. To again identify and quantify the PPARG variants in the bins with high 
and low CD36, genomic DNA was extracted from the cells in each bin and 
the integrated proviral PPARG transgene was amplified by PCR and shotgun 
sequenced (Nextera, Illumina). Raw sequencing reads were aligned to the 
reference PPARG cDNA sequence (Supplementary Table 4), and the number 
of occurrences of each amino acid at each position along the coding region 
was counted and tabulated with a custom aligner. To minimize erroneous 
mutation calls, only codons that matched designed mutations and consisted 
of high-quality base calls (Phred score >30) were tabulated. Over 99% of the 
designed amino acid substitutions were observed at least 50 times for a given 
experimental condition (Supplementary Fig. 1). A raw function score was 
calculated on the basis of the ratio of observed frequencies of each mutant 
amino acid in the two CD36 activity bins (Fig. 1).

Calculation of raw function score. Control experiments showed that variants 
deleterious to PPARγ function were enriched in the fraction with low CD36 
and benign variants were enriched in the fraction with high CD36. We con-
structed a likelihood function based on the log odds of an amino acid variant 
being in the fraction with high or low CD36. The log odds for each amino 
acid variant was estimated by maximizing a likelihood function based on the 
observed counts of each amino acid variant in the fractions with high and low 
CD36 as well as the total read depth at that amino acid position. Data were 
combined across experimental replicates after determining replicate variability 
(Supplementary Fig. 4). To avoid spuriously high or low log-odds estimates 
for any given variant, we constrained the log-odds estimate with a Gaussian 
prior whose parameters were estimated from data combined across all vari-
ants (see the Supplementary Note for detailed specification of the analytical 
methods used).

Construction of a PPARG classifier by supervised machine learning. To pre-
dict the likelihood of new variants being benign or pathogenic, we developed 
a classifier based on raw function scores obtained across various experimental 
conditions. The synthesis of multiple experimental conditions was intended 
to span a greater range of possible activities of PPARγ than would be queried 
using a single condition. Specifically, we used LDA (MASS package in R 3.0) 
to train the classifier, adopting a two-class model. The model incorporates as 
parameters (i) raw function scores for each PPARγ variant as measured across 
the four experimental conditions (rosiglitazone and prostaglandin J2 at high 
and low doses) and (ii) mutation tolerance scores calculated for each posi-
tion in PPARγ as measured across the four experimental conditions (Fig. 1b). 
Potential classifiers were systematically constructed on linear combinations 
of four of these eight parameters, with a requirement that one parameter be 
included from each experimental condition. Classifier models were built for 
each of the 16 possible combinations of 4 parameters using a training set of 
pathogenic and benign PPARγ variants (Supplementary Table 1). Pathogenic 
variants used to train the classifier were selected on the basis of (i) segregation 
with FPLD3 and (ii) previous demonstration of loss of function in cellular 
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assays. Benign variants used to train the classifier were selected from among 
variants identified in 60,706 aggregated exome sequences19 at an allele fre-
quency rendering them very unlikely to be causal for FPLD3 under a dominant 
model of inheritance and a prevalence estimate ranging from 1:100,000 to 
1:1,000,000 (P < 0.05, one-tailed binomial probability, n = 121,412 chromo-
somes; P = 1 × 10−5) (Supplementary Table 1). The performance of these 
16 models was compared using a leave-one-out cross-validation (LOOCV) 
protocol with each model scored by its aggregate ability to correctly classify 
the ‘left-out’ variant over all the cycles of LOOCV. The highest scoring model 
consisted of raw function scores for each possible variant obtained from three 
conditions (1 µM rosiglitazone, 0.1 µM rosiglitazone, 10 µM prostaglandin) 
and mutation tolerance scores for each position in PPARG obtained under 
treatment with 0.1 µM prostaglandin. This model was fit to the full train-
ing data set for prospective evaluation of new PPARG variants. The weighted 
sum of the four parameters in the final model, as fit by the LDA algorithm, 
is denoted as the IFS (Fig. 2c and Supplementary Fig. 5) and represents an 
aggregate measure of variant function over the four experimental conditions. 
For clinical prediction, the IFS was expressed as the odds (benign:pathogenic), 
which when multiplied by the estimated prior odds of FPLD3 based on the 
clinical situation (prevalence) yielded an estimated probability of pathogenic-
ity. Because the final model was trained on the full set of available pathogenic 
and benign variants, its performance next required prospective evaluation 
on a completely independent set of variants. These variants were obtained 
from the population and clinic data described below and were evaluated as 
described in Figure 3.

Missense PPARG variants identified in population-based exomes and  
clinically referred individuals. The study was conducted in accordance  
with the Declaration of Helsinki, and approved by research ethics committees; 
written informed consent was obtained from all participants.

Missense PPARG variants were extracted from 22,106 exomes (8,400 with 
early-onset coronary artery disease and 12,804 controls) sequenced by the 
Myocardial Genetics Consortium (MIGEN) as described elsewhere20. Study 
participants were ascertained from the following studies: ATVB, DHM, 
DUKE, JHS, ESP-EOMI, MedStar, OHS, PennCath, PROCARDIS, PROMIS, 

and REGICOR. Participants were of European ancestry (n = 12,849; 58%), 
Asian ancestry (n = 6,823; 31%), African ancestry (n = 2,399; 11%), and ‘other  
or unknown’ self-reported ancestry (n = 34; 0.2%). Twenty-two percent  
(n = 4,258) reported a diagnosis of T2D.

Patients were referred to one of two UK centers (Cambridge or Exeter; 
see URLs) that specialize in syndromes of severe insulin resistance and/or 
monogenic forms of diabetes. In clinically suspected FPLD3 cases, muta-
tions in PPARG were identified in genomic DNA extracted from peripheral 
blood leukocytes using PPARG amplification and sequencing. In patients for 
whom FPLD3 was not the primary clinical diagnosis, PPARG was sequenced 
as part of a targeted next-generation panel of 29 genes30 selected to improve 
diagnostic yield for suspected monogenic diabetes. Variants were confirmed 
in index patients and, where possible, family members. In all instances, the 
nomenclature used for missense variants is for isoform 2 of PPARG (transcript 
NM_015869.4; protein NP_056953.2).

Individual testing of PPARG variant function by transcriptional activ-
ity. The new variants identified in patients with suspected familial lipo-
dystrophy or diabetes were characterized using a well-established PPARγ 
reporter containing three copies in tandem of the PPRE from ACOX1  
(5′-GGACCAGGACAAAGGTCACGTT-3′) upstream of the thymidine kinase 
(TK) promoter and luciferase. In brief, 293EBNA cells, cultured in DMEM 
supplemented with 10% FCS, were transfected with Lipofectamine 2000 in 24-
well plates and assayed for luciferase and β-galactosidase activity as described 
previously13 following 36 h of incubation with or without ligand.
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