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Abstract

Genome-wide association studies have linked millions of genetic variants to biomedical phenotypes, but their
utility has been limited by a lack of mechanistic understanding and widespread epistatic interactions. Recently,
Transformer models have emerged as a powerful general-purpose architecture in machine learning, with
potential to address these and other challenges. Accordingly, here we introduce the Genotype-to-Phenotype
Transformer (G2PT), a framework for modeling hierarchical information flow among variants, genes,
multigenic functions, and phenotypes. As proof-of-concept, we use G2PT to model the genetics of TG/HDL
(triglycerides to high-density lipoprotein cholesterol), an indicator of metabolic health. G2PT learns to predict
this trait via high attention to genetic variants underlying 24 functions, including immune response and
cholesterol transport, with accuracy exceeding state-of-the-art. It implicates unexpected epistatic interactions,
including those among APOC1 and CETP. This work positions Hierarchical Transformers as a general approach
to functionally interpret polygenic risk. The source code is available at https://github.com/idekerlab/G2PT.
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1 Introduction

Common diseases such as type 2 diabetes, cardiovascular disorders, and fatty liver are highly polygenic and
physiologically heterogeneous, involving complex networks of interactions within and among multigenic
molecular functions [1–4]. In these complex diseases, examination of single genetic variants, or even single
genes, has had limited utility. Rather, progress has been made systematically identifying associated genetic
variants through genome-wide association studies (GWAS), and then combining these SNP-phenotype
associations using methodologies collectively termed Polygenic Risk Scores (PRS) [5–8]. PRS methods have
been applied to predict phenotypes in a wide range of common multigenic diseases [6, 9–11] but have two major
limitations: 1) they model loci additively and thus miss functional dependencies among (genetic epistasis), and
2) they emit a risk estimate for an individual but cannot distinguish the perturbed molecular and physiological
pathways underlying that persons set of risk driving SNPs which if understood could be used to gain biological
understanding and guide treatment [12].

Recent developments in deep learning [13–23] offer significant opportunities to advance the current
framework, as they have the capacity to model both complex epistatic interactions and knowledge of molecular
mechanisms. In particular, the Transformer [24] has emerged as a central state-of-the-art modeling approach in
diverse fields including natural language understanding, generation of realistic text, photographs and video, and
automated software programming [25–27]. It has also shown strong potential to address longstanding problems
in the biomedical sciences [28–32], including prediction of 3D protein structures or expression patterns from
primary genome sequence data [20]. The Transformer architecture is known for its central use of an “attention
mechanism” [24], which allows a neural network to increase the weights of certain relationships and downgrade
others depending on context, similar to how humans selectively focus on certain aspects of a sentence or scene
depending on the task at hand [24, 33, 34]. Although it can depend on the modeling task, analyzing where a
model directs its attention has potential utility in understanding the rules and logic underlying its predictions, a
process known as model interpretation [24, 35–37]. The ability to clearly interpret a model is also important for
promoting transparency, trust, and fair decision-making, all of which are critical in clinical practice [38–42].

Here we describe the Genotype-to-Phenotype Transformer (G2PT), a hierarchical Transformer
architecture for general genotype-to-phenotype translation and interpretation (Fig. 1a). The G2PT model
analyzes the complex set of genetic variants in a genotype by computing attention across embedded
representations of genes and a hierarchy of multigenic functions. As proof-of-concept, we apply G2PT to reveal
a constellation of genetic factors that govern TriGlyceride / HDL-cholesterol ratio (TG/HDL), a central readout
of metabolic function and risk for diabetes and cardiovascular disorders [43–46] (Fig. 1b). The result is a
predictive genomic model that offers mechanistic interpretability and facilitates the discovery of numerous
epistatic interactions among genes and regulatory regions.

2 Results

2.1 G2PT Model Overview.

The G2PT framework models the states of biological entities, including variants, genes, multigenic functions,
and phenotypes, as coordinates within a machine learning embedding. An embedding is a simplified
low-dimensional representation of a high-dimensional dataset, optimized so that similar entities are assigned
similar embedding coordinates [47, 48]. Positions in the embedding (i.e. the states of each entity) are governed
by a Hierarchical Transformer (HiTR), a deep neural network that models bidirectional flow of information
across the hierarchy of entities. Such information flow includes the effects of variants on the states of genes
(SNP-gene interactions), the effects of altered genes on multigenic functions and superfunctions (gene-function
and function-function interactions), and the reciprocal influences of functions on the states of their component
functions and genes (reverse interactions, Fig. 1a, Methods). Based on the collection of variants comprising an
individual’s genotype, the HiTR model uses a multi-head attention mechanism to propagate these effects to
select biological entities in the hierarchy, resulting in updates to their embedding coordinates. Finally, the entire
collection of embedding states for genes and functions is used to predict phenotype.

2.2 Using G2PT to Model a Metabolic Phenotype.

As proof-of-concept, we used G2PT to study human metabolism, focusing on the TG/HDL ratio as a model
metabolic phenotype (Fig. 1b). Human subjects, along with their corresponding genotypic variants (covering
203,126 Single Nucleotide Polymorphisms, or SNPs) and matching TG/HDL values (Supplementary Fig. 1),
were obtained from a cohort of 423,888 participants profiled in the UK Biobank [49, 50]. SNPs were mapped to
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their nearest gene (hg37 reference genome coordinates, Methods), and genes were mapped to a hierarchy of
multigenic functions condensed from Biological Process terms recorded in the Gene Ontology (Fig. 1b) [51].

Fig. 1: G2PT Workflow and Application to TG/HDL Ratio. a, G2PT workflow. Inputs of the Transformer
model include genotypic data (SNPs, bottom layer), a mapping of SNPs to genes (second layer), and a mapping
of genes into a hierarchy of multi-genic molecular functions (top layers). The presence of SNP minor alleles
modifies the embedding states of downstream genes and multigenic functions (forward propagation).
Conversely, state changes in functions influence the states of sub-functions and genes they contain (reverse
propagation). Finally, all gene and function states are integrated to predict phenotype. b, Proof of concept via
prediction of triglyceride/high-density-lipoprotein ratio (TG/HDL). Genotypic data and corresponding metabolic
traits for over 430,000 participants are extracted from the UK Biobank. SNPs are selected based on their
independent association with TG/HDL ratio and mapped to the closest genes, which in turn map to multi-genic
functions defined by Gene Ontology terms. This information is used by G2PT to predict the TG/HDL
phenotype.

Using this information, G2PT models were trained to translate an individual’s pattern of SNPs to a
prediction of TG/HDL. Training and evaluation were carried out in the robust framework of five-fold nested
cross-validation [52, 53], in which the population is divided into separate training, validation, and test samples
using 60/20/20 splits (Methods). As for current PRS models [54], input features for G2PT were defined as
SNPs that have an independent marginal association with TG/HDL phenotype, where significance of association
was defined across a series of P-value thresholds of decreasing stringency (Methods). The resulting scope
ranged from 75 SNPs, identified at a starting threshold of p = 10–8, to 2088 SNPs, identified at a relaxed
threshold of p = 10–2 (Fig. 2). Separate G2PT models were trained on each of these inputs. The entire training
procedure required approximately 48 hours using 4 NVIDIA A30 Graphics Processing Units (GPUs,Methods).

Following training, we assessed the performance of G2PT models in predicting TG/HDL levels for
held-out individuals in the test set (samples not included in any aspect of model training or hyperparameter
tuning). For individuals with a high TG/HDL ratio (defined as TG/HDL ≥ 2.3 following standard guidelines
[55]), G2PT could categorize these individuals at an odds ratio of 3.10, relative to current PRS methodology
which yielded an odds ratio of 1.95 (Fig. 2a). We found that G2PT achieved its highest predictive accuracy
when considering SNPs selected at a p-value threshold of 10–5 (R2 = 0.144, Fig. 2b). We also benchmarked this
performance against several alternative machine learning models, including XGBoost [56] and the ElasticNet
architecture (Methods), finding that the performance of G2PT outcompeted both of these alternatives (Fig. 2, p
< 10–4 by paired t-tests).
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Fig. 2: Analyzing Predictive Performance of G2PT Against Baselines. a, Odds ratio performance in
categorizing individuals with high TG/HDL (see text). The performance is shown for a current PRS approach
(BOLT-LMM) and G2PT. b, Predictive performance of G2PT against other machine learning models (XGBoost
and ElasticNet) as measured by explained variance (R²) and scanned across an expanding range of P-value
thresholds for selection of significant SNPs. The number of SNPs, genes, and functions at each threshold is
provided. Both panels: bars/points represent mean performance and error bars represent 95% confidence
intervals over five folds of cross validation.

2.3 Transformer Attention Reveals Biological Mechanisms Underlying Phenotype.

We next studied the model’s attention to genes and functions in predicting the TG/HDL phenotype (Methods).
As a positive control, we examined the Apolipoprotein A-V (APOA5) gene, a known regulator of TG/HDL [57]
which we expected should be given high attention by the G2PT framework. We indeed found a substantial
number of subjects for which G2PT gave high attention to APOA5, and that these subjects tended to have
significantly higher predicted TG/HDL levels (Supplementary Fig. 2a). Further inspection revealed a
predictive SNP rs45515495 located upstream of this gene with a minor allele frequency (MAF) of 6%. Similar
high attention was observed for the hierarchy of molecular functions in which this gene is involved (e.g., Sterol
homeostasis, Supplementary Fig. 2b).

Altogether across all predictions for the 420K+ individuals, we identified significant model attention
on 24 multigenic functions (importance score > 0.25, Methods) covering a total of 191 SNPs linked to 123
genes. These functions spanned a variety of biological processes, including HDL particle remodeling, lipid
localization, and lipopolysaccharide signaling, all of which had been previously linked to TG/HDL ratio [58,
59]. We also observed unexpected processes pertaining to macrophage and leukocyte differentiation (Fig. 3a-b).
As for the 123 genes, 89 of these had been previously associated with TG/HDL, TG, or HDL-cholesterol in the
GWAS catalog [60], whereas the remaining 34 gene associations had not been previously reported (Fig. 3c,
Supplementary Table 1).

We compared the G2PT importance scores with the functional enrichment scores provided by
MAGMA [61] for the same dataset. We observed moderate agreement between these results (Pearson r = 0.30),
particularly in enrichment of functions related to lipid and lipoprotein metabolism (e.g. high-density particle
remodeling and reverse cholesterol transport, Supplementary Fig. 3). On the other hand, we observed a number
of functions which G2PT had scored strongly but MAGMA had not, including immune regulatory and
hematopoietic functions (Supplementary Fig. 3).

2.4 Genetic Variants Underlying Leukocyte Differentiation Impact TG/HDL.

We next inspected leukocyte differentiation, an unexpected function identified by G2PT in prediction of
TG/HDL phenotype (Fig. 4a,b). Within this function we noted the Tribbles homolog 1 (TRIB1) gene, which
harbored multiple SNPs with TG/HDL association, including one with an extremely high level of significance
(rs2954021, p < 10–200). This gene had been previously linked to lipid metabolism but not leukocyte
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differentiation [62–65]. A second gene assigned to leukocyte differentiation, protein kinase C alpha (PRKCA),
was given high G2PT attention based on a single SNP (rs117524772, p = 3.5x10–7, Fig. 4b) which was only
moderately associated with TG/HDL (i.e. failing a strict genome-wide significance threshold of p < 10–8).
Beyond these genes, leukocyte differentiation was impacted by informative variants from five other gene loci,
such as the Retinoic Acid Receptor Alpha (RARA) and H2.0-Like Homeobox (HLX) genes, both of which are
well known drivers of leukocyte differentiation that had not been identified in previous GWAS of TG/HDL or
related phenotypes.

Fig. 3: Important Functions in Prediction of TG/HGL. a, Hierarchy of important functions extracted from the
GO Biological Process database. Functions are represented as circles, with the size of each circle proportional to
the number of genes assigned to that function. Arrows represent involvement in a broader function (“is_a”) or
containment of one function by another (“part_of”). Color intensity represents the importance score, which
captures the attention given to that function across the human individuals considered by the G2PT model
(Methods). b, Bar plot showing the importance scores of the top 24 multigenic functions (GO Biological
Process) identified by the G2PT model. c, Venn diagram illustrating the overlap of genes returned by G2PT
(red) versus GWAS Catalog (green) or MGD (blue). Numbers in each section represent the count of genes
shared by the corresponding results. GWAS: Genome Wide Association Studies of TG, HDL, or TG/HDL.
MGD: Mouse Genome Database.
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2.5 G2PT Uncovers an Epistatic Interaction Between CETP and APOC1.

Within the function of HDL Particle Remodeling—one of the highest scoring important functions (Fig. 3b),
which involves enlargement or reduction of HDL particle size—two SNPs that were particularly impactful for
phenotype prediction were rs1800775, a SNP on chromosome band 16q13 associated with the cholesteryl ester
transfer protein (CETP), and rs483082, a SNP on 19q13 linked to the apolipoprotein C-I (APOC1) (Fig. 4c).
Among individuals for which G2PT placed high attention on HDL Particle Remodeling, the states of these two
SNPs were significantly correlated, indicative of genetic epistasis (Supplementary Fig. 4, Fisher’s exact test p
< 10–26). In particular, individuals homozygous for the rs483082 reference allele showed a marked
underrepresentation for presence of the minor allele for rs1800775 (Fig. 4d). Notably, the APOC1 SNP was
linked to an increase in TG/HDL (p < 10–48), the CETP SNP was linked to a decrease (p < 10–85), and in cases
where the minor alleles for both SNPs were present or absent simultaneously, the average TG/HDL ratio across
participants remained unchanged (p = 0.66) (Fig. 4e). These findings suggested that these SNPs act in an
opposing, compensatory fashion to combinatorially modulate the TG/HDL phenotype. Using combinatorial
linear modeling [66, 67] (Methods, Supplementary Fig. 4), this epistatic interaction was revealed to be
statistically significant (Bonferroni q < 10–4), along with 6 other SNP-SNP epistatic interactions among the 24
important functions (Methods, Supplementary Table 2).

Fig. 4: Convergence of SNPs on Multigenic Functions. a, Illustration of the bidirectional flow of information
through the functional hierarchy. Forward propagation (red arrows) represents genetic information flow from
SNPs to functions, while reverse propagation (blue arrows) indicates information flow from functions back to
genes. Forward and reverse propagation are sequential steps during model execution. b, Specific example of (a),
visualizing flow of information through functions related to leukocyte differentiation. Arrow width is
proportional to the amount of attention given by the Transformer model. Below the diagram is the significance
from GWAS summary statistics of each relevant SNP, with darker red implying greater GWAS significance. c,
Flow of genetic information from SNPs through key genes involved in HDL particle remodeling. The heatmap
shows the odds ratio of each SNP being present in the function receiving high attention, where an odds ratio of 1
implies no significance in the presence or absence. SNPs in bold (rs1800775, rs483082) have a strong epigenetic
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interaction as explored in panels d-e. d, Contingency table showing combinations of allelic states for the
epistatic SNPs (rs1800775, rs483082). The observed number of individuals with each combination is shown in
the upper triangles, whereas the expected numbers (assuming no interaction) are shown in the bottom triangles.
e, TG/HDL ratios for all four combinations of alleles from the interacting pair of SNPs. The circles represent
mean values and error bars represent 95% confidence intervals.

2.6 Validation by Mouse Gene Disruptions.

To corroborate the implicated genes and functions against independent supporting evidence, we examined data
from the Mouse Genome Database (MGD), which records nearly 364,000 mouse phenotypes in response to
gene knock-outs (KO) or other genetic perturbations. Focusing on the 123 genes important to G2PT for
predicting TG/HDL ratio, we found that genetic disruptions in 29 of these genes had been documented to cause
mouse phenotypes related to circulating TG or HDL cholesterol levels (Fig. 5), representing highly significant
enrichment (hypergeometric test q < 10–2 for both TG and HDL; Fig. 3c). Despite having MGD evidence, four
of these genes — zinc finger E-box binding homeobox 1 (ZEB1), peroxisome proliferator activated receptor
delta (PPARD), G protein subunit alpha 11 (GNA11), and RNA-binding protein Raly (RALY) — had not been
previously linked to TG or HDL by previous GWAS results (Fig. 3c). Further inspection showed that all four
genetic loci harbored SNPs with marginal, but not genome-wide, association to TG/HDL (Supplementary Fig.
5), explaining why they might have been overlooked earlier. In addition to TG and HDL, the 123-gene set was
also enriched for phenotypes related to lipodystrophy, type-II diabetes, liver metabolism, and immune cell and
hematopoietic phenotypes (hypergeometric q < 10–2 for all five MGD phenotypes. Fig. 5).

Fig. 5. Exploration of Important Genes and Functions in Knock-out Mice. Associations between genes and
phenotypes based on experimental data from the Mouse Genome Database (MGD). The heatmap displays the
important 29 genes with TG or HDL related phenotypes in MGD (columns) and their significant enrichment in
11 knockout phenotypes (rows). Gene/phenotype effects (for which gene knockout alters the phenotype) are
marked by colored squares, with color denoting the class of phenotype: red for TG and HDL homeostasis,
orange for adipose-related diseases, yellow for diabetes-related phenotypes, green for liver metabolism
phenotypes, and blue for immune and hematopoietic phenotypes. The genes highlighted in red have not been
previously associated with TG, HDL, or TG/HDL ratio in the GWAS catalog.

3 Discussion

In this exploration of Transformer models in genotype-phenotype translation, we have found that G2PT
achieves better than state-of-the-art performance in prediction of TG/HDL, a model phenotype (Fig. 2). One
reason for this favorable performance may relate to the multi-head attention mechanism used by Transformer
models, which can be very adept at identification of informative interactions among input features [24]. Whether
Transformer attention weights offer a means of model interpretation has been a topic of some debate [35, 68].
Here we demonstrate one means by which attention can indeed inform interpretation, by separating the
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computation of attention into genetic factor propagation and genetic factor translation (Fig. 1a). During genetic
factor propagation, multi-head attention is used to propagate the effects of SNPs across the knowledge hierarchy
of genes and functions. During subsequent genetic factor translation, single-head attention is used to quantify
the impacts of these altered genes and functions on an individual’s phenotype. The initial use of multi-headed
attention enables the model to be informed by diverse interactions, whereas the later use of single-headed
attention enables a single score to prioritize the biological mechanisms that underlie a phenotype, making
attention interpretable.

Fig. 6: Biological Models of Important Functions Towards Prediction of TG/HDL. a, HDL particle
remodeling pathway. HDL particles are enlarged by phospholipid transfer protein (PLTP). Cholesteryl ester
transfer protein (CETP) facilitates the exchange of cholesterol esters (CE) with triglycerides (TG) between HDL
and LDL, making HDL TG-rich. Scavenger receptor class B member 1 (SCARB1) mediates hepatic uptake of
TG-rich HDL, where hepatic lipase (LIPC) processes HDL into smaller particles for renal clearance and
hydrolyzes TG to fatty acids and glycerol. b, Interaction between APOE/APOC1 and CETP. SNP rs483082
reduces APOC1 expression via a CTCF binding site, while SNP rs1800775 decreases CETP expression from its
promoter. APOC1 inhibits CETP activity; therefore, downregulation of APOC1 leads to increased CETP
activity. c, Role of macrophages in HDL regulation. Macrophages take up low-density lipoprotein (LDL) and
internalize lipids such as free cholesterols (FC) and phospholipids through scavenger receptor class B member 3
(SCARB3). These activate peroxisome proliferator-activated receptor delta (PPARD) and liver X receptor alpha
(NR1H3), which lead to export of lipids and apolipoproteins, facilitating assembly of HDL. PPARD also inhibits
Nuclear Factor Kappa B Subunit 1 (NFKB1), thereby suppressing inflammatory signaling and increasing HDL
levels in the blood. All panels: Red bold text denote important genes for G2PT prediction.

Another notable aspect of the G2PT architecture is the bidirectional flow of genetic information across
biological scales. During the genetic factor propagation phase, G2PT not only transmits the effects of variants
upwards in scale to impact genes and their collective functions, but it reverses this flow by enabling the states of
functions to impact how variants in specific genes within that function are incorporated. Reverse propagation
captures the biological context in which genes and variants operate and promotes cross-talk among multiple
genetic variants that may have conditional interrelationships. For example, during forward propagation, the
embedding of PRKCA was informed by its variant allele type only (Methods, Supplementary Fig. 6a).
Following reverse propagation, the PRKCA embedding was updated in the context of the relatively high
importance of its parent function (due to the convergence of this and other genetic variants), which increased its
own importance for TG/HDL prediction (Supplementary Fig. 6b). Reverse propagation proved very effective
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in our genotype-phenotype translation task, as it allowed the model to identify PRKCA, a gene involved in
hematopoietic functions, as important towards governing the TG/HDL phenotype (Fig. 3a-b, Fig. 4b,
Supplementary Fig. 3). While this functional association had not been made previously (e.g. using tools such
as MAGMA), it aligns with the known role of macrophages [69] in HDL-mediated cholesterol transport [70, 71]
as well as results from previous population genetic studies which have reported associations between leukocyte
counts and lipid traits [72–74].

Further examination of G2PT attention revealed a notable epistatic interaction among genetic variants
underlying the genes CETP and APOC1 (Fig. 4c-e). This interaction involves a SNP in the promoter region of
CETP (rs1800775), which a prior study found is able to downregulate CETP expression [75]. Another SNP is
located between APOE and APOC1 on a binding site for the CCCTC-binding factor (CTCF), which has been
observed to cause downregulation of APOC1, an inhibitor of CETP activity [76–78] (Fig. 6a, b). Plausibly,
downregulation of CETP leads to elevated HDL, while downregulation of APOC1 leads to decreased HDL.
Under this model, simultaneous downregulation of APOC1 and CETP by the presence of both SNPs would
result in an epistatic interaction that stabilizes HDL levels (Fig. 4e).

Of the 34 genes implicated by G2PT that did not have previous association to TG/HDL, 4 had outside
support via genetic disruptions in mice: PPARD, GNA11, RALY, and ZEB1 (Fig. 3c, Fig. 5a). Peroxisome
proliferator-activated receptors are well-known for their role in lipid metabolism [79]. Like its better studied
paralog PPARA, PPARD likely regulates TG/HDL ratio by modulating ATP-binding cassette transporter 1
(ABCA1) through liver X receptor alpha (NR1H3) in macrophages [80]. Unlike PPARA, PPARD indirectly
influences HDL levels through its involvement in inflammatory pathways, specifically by interacting with
Nuclear Factor Kappa B Subunit 1 (NFKB1) [81] (Fig. 6c). Both PPARD and NFKB1 were identified as
significant genes by G2PT, underscoring their potential roles in lipid metabolism and inflammation. Notably,
PPARD was missed in previous GWAS, likely due to the low minor allele frequency of the SNP (MAF = 3%,
association p-value p = 4.3x10–8, Supplementary Fig. 5) or the position of the SNP within an intron rather than
coding region.

Despite the promising use of Transformers to approach genotype-phenotype questions, our study also
points to some current limitations. First, computing attention is an expensive operation [24] with substantial
training time and data required to reach convergence. In our study, G2PT required four A30 GPUs over
approximately 40 hours of training. There are also challenges introduced by using the Gene Ontology as a prior,
as it includes many groups of functions [82] with nearly identical sets of genes, and it has a natural bias towards
well-studied functions. Some of these issues may arise because GO has been manually constructed rather than
computationally derived [51]. An important step moving forward will thus be to explore models that leverage
alternative knowledge structures, such as Reactome [83], or maps of biological structures and functions derived
directly from ‘omics data [84, 85]. Regardless, G2PT has immediate application to the genetic analysis of
diverse phenotypes of interest, including those related to multigenic diseases such as type-II diabetes, autism,
aging, or cancer. More generally, this work presents a template for constructing interpretable Transformer
architectures for application to other deep learning challenges.

4 Materials and Methods

4.1 Genome-Wide Association Study (GWAS) for Lipid Traits.

This study uses human genotype data from the UK Biobank [49]. Participants of Caucasian ancestry were
genotyped with SNP arrays and had values recorded for their HDL and TG levels [86] based on millimole per
liter (mmol/L). The ratios of TG-to-HDL were then log2 transformed. Participant SNPs were imputed utilizing
the Michigan Imputation Server [87] guided by the 1000 Genomes Project Phase 3 reference panel [88]. SNPs
with an R² value greater than 0.2 underwent Linkage Disequilibrium (LD) pruning [89, 90], retaining a total of
203,126 SNPs. We performed a Bayesian logistic regression analysis utilizing BOLT-LMM software to explore
the association between SNPs and TG/HDL ratios, while including sex, age, and the top 10 principal
components as covariates. The significantly associated SNPs were then selected based on a GWAS p-value
threshold to build machine learning models.

4.2 G2PT Model.

G2PT uses a Hierarchical Transformer (HiTR) to integrate and distribute genotypic information across different
levels in a gene function hierarchy (here, Gene Ontology Biological Process) (Fig. 1a). This model propagates
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the effects of genetic variations on biological states of genes and functions, then translates these altered states to
predict phenotypes (Fig. 1a-b). Specific details are as follows.

Hierarchical Transformer (HiTR). HiTR is a modified version of the Transformer [24] that leverages a graph
H representing a gene function hierarchy. Nodes of H represent biological entities, including SNPs, genes and
biological functions (also called “systems” below). Edges represent hierarchical functional relationships,
including annotation of genes to functions and involvement of a function in a broader parent function (i.e. “is_a”
and “part_of” relations defined in the Gene Ontology). For some entity i within H, we define as its
embedding state, and as the subset of other entities in H connected to i. The embedding state of each entity j
connected to i is defined as . The objective of the HiTR is to “update” the embedding of i by
considering the effect from each connected entity j in . The embedding update is defined as the following:

(1)

The HiTR creates an embedding used for updating by computing a weighted sum of linear projections of
each :

(2)

are learnable weight matrices encoding the central concepts of query, key and value used in the
Transformer model. The interactions between entity i and the set of connected entities j are represented as
attention values . The parameter encodes the size of the hidden dimension of embedding (for scaling).
The updated embedding, , is computed by adding the HiTR results to the original embedding, , thus
producing an embedding incorporating effects from connected entities in the hierarchy.

Genetic Factor Propagation Phase. G2PT models the bidirectional effects of genetic alterations using the
following modules: SNP2Gene, Gene2Sys, Sys2Env, Env2Sys, and Sys2Gene. Each module plays a role in
propagating changes through different layers of the function hierarchy. The SNP2Gene, Gene2Sys, and Sys2Env
modules propagate the effects of genetic variation upward towards the root of hierarchy. Env2Sys and Sys2Gene
then reverse the genetic factor propagation toward lower layers of the hierarchy and back to genes. All of these
modules use multi-headed attention.

Overall, the complete aggregation of changes upon a single function (system) can be formulated as:

(3)

is the original embedding of the function i. updates by computing the HiTR results from
its genes, further updates by computing the HiTR results from its sub-functions, and

finalizes the update of by computing the HiTR results from its super-functions Additionally,
the alteration of a single gene can be formulated as:

(4)

is the original embedding of the gene i. updates by computing the HiTR results from
embeddings of its SNPs, and further updates by computing the HiTR results from its
functions including gene i.

Genetic Factor Translation Phase. G2PT creates an initial embedding, P, for each participant using their sex
and age covariates and projecting these values through linear layers. G2PT then uses the finalized embedding
states of functions (systems) and genes from the genetic factor propagation phase to update the participant
embedding in two modules: Sys2Pheno and Gene2Pheno. Sys2Pheno uses equation (1) to update P across all
function embeddings, while Gene2Pheno uses equation (1) to update P across all gene embeddings. To
maximize interpretability, both modules only use one attention head. The embeddings from Sys2Pheno and
Gene2Pheno are concatenated and projected through a final layer to predict phenotype. Altogether, this layer can
be formulated as:
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(5)

represents the learnable prediction weights. The output of this projection is a predicted value for the
phenotype. A detailed description of each module can be found in Supplementary Methods.

4.3 Model Training and Performance Evaluation.

Nested cross-validation was employed to robustly evaluate model performance in mapping genotype to
phenotype. In each fold, data were split into training, validation, and test sets in a 3:1:1 ratio, with the training
set used for selecting significant SNPs and fitting model parameters, the validation set used for tuning model
hyperparameters, and the test set comprising held-out samples for independent evaluation of performance.
BOLT-LMM was applied to assess the genome-wide marginal significance of genotype-phenotype association
for each SNP, enabling us to pre-select SNPs used in model training. With SNPs selected through specific
p-value thresholds, the genotypes of participants are represented by vectors of SNPs, where each SNP is
encoded as 0 to represent the homozygous reference allele, 1 the heterozygous major/minor allele, and 2 the
homozygous minor allele. Using these notations for representing zygosity of a SNP, we constructed a
participant-by-SNP matrix to train XGBoost and ElasticNet models using hyperparameters optimized through a
grid search. To build the G2PT model, the selected SNPs were mapped to their nearest protein-coding genes,
and the resulting gene mappings were used to prune the Gene Ontology (GO) [51] hierarchy with the DDOT
package [91].

4.4 Scoring the Importance of Genes and Functions.

During the genetic factor translation phase, G2PT assigns attention scores that quantify the effect of genes and
functions towards predicting an individual's phenotype (see above section 4.2). To assess the importance of
these genes and functions across the population, we trained the model with the whole population and optimal
hyperparameters identified through nested cross-validation (see above section 4.3). Recognizing sex as a
confounding factor, we calculated Pearson correlations between the individual attention scores and the predicted
TG/HDL ratios separately for males and females. We then averaged the absolute values of these correlations,
which served as the importance score assigned to each function and gene.

4.5 Detection of Epistatic Interactions in Important Functions.

For each important function, we first used a chi-square test to identify SNPs that exhibited significant
differences in frequency within the subset of individuals with high function attention relative to the overall
population. Next, we tested the SNPs assigned to genes annotated to the important function for potential
epistatic interactions. Epistatic interaction was defined as significant co-occurrence or mutual exclusivity using
Fisher’s exact test. Finally, to measure the effect of a pair of interacting SNPs on phenotype, we constructed a
combinatorial linear model as follows [66, 67]:

(6)

Each α represents an effect size of the SNP, which is estimated from data, and SNP1×SNP2 denotes the
interaction term between SNP1 and SNP2. β and γ are the effect sizes of the sex and age covariates, respectively.
This function models the significance of the epistatic interaction with respect to the phenotype and is corrected
through the Bonferroni procedure (Supplementary Fig. 4). For each statistical test, we used an adjusted p-value
threshold of 10–2 to filter out insignificant SNPs and epistatic SNP pairs.

4.6 Validation of Important Functions by Mouse Gene Disruption Data.

We extracted the mammalian phenotype ontology from the `mp.owl` file
(https://www.informatics.jax.org/downloads/reports/mp.owl) and mapped genes to phenotypes using
mammalian phenotype annotations [92]. We extended gene associations through the mammalian phenotype
ontology by linking genes associated with child phenotypes to all their parent phenotypes. Statistical enrichment
was assessed using a hypergeometric test with q-values corrected by Benjamini-Hochberg.
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